2,006 research outputs found

    Character Expansion Methods for Matrix Models of Dually Weighted Graphs

    Get PDF
    We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large NN limit of the Itzykson-Zuber formula. We illustrate and check our methods by analyzing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phase transitions from random to flat lattices.Comment: 22 pages, harvmac.tex, pictex.tex. All diagrams written directly into the text in Pictex commands. (Two minor math typos corrected. Acknowledgements added.

    Long-lived Charginos in the Focus-point Region of the MSSM Parameter Space

    Full text link
    We analyse the possibility to get light long-lived charginos within the framework of the MSSM with gravity mediated SUSY breaking. We find out that this possibility can be realized in the so-called focus-point region of parameter space. The mass degeneracy of higgsino-like chargino and two higgsino-like neutralinos is the necessary condition for a long lifetime. It requires the fine-tuning of parameters, but being a single additional constraint in the whole parameter space it can be fulfilled in the Constrained MSSM along the border line where radiative electroweak symmetry breaking fails. In a narrow band close to the border line the charginos are long-lived particles. The cross-sections of their production and co-production at the LHC via electroweak interaction reach a few tenth of pb.Comment: LaTeX, 11 pages, 11 eps figure

    Mass enhancement, correlations, and strong coupling superconductivity in the beta-pyrochlore KOs2O6

    Full text link
    To assess electron correlation and electron-phonon coupling in the recently discovered beta-pyrochlores KOs2O6 and RbOs2O6, we have performed specific heat measurements in magnetic fields up to 14 T. We present data from high quality single crystalline KOs2O6, showing that KOs2O6 is a strong coupling superconductor with a coupling parameter lambda_ep \approx 1.0 to 1.6 (RbOs2O6: lambda_ep \approx 1). The estimated Sommerfeld coefficient of KOs2O6, gamma=76 to 110 mJ/(mol K^2), is twice that of RbOs2O6 [gamma=44 mJ/(mol K^2)]. Using strong-coupling corrections, we extract useful thermodynamic parameters of KOs2O6. Quantifying lambda_ep allows us to determine the mass enhancement over the calculated band electronic density of states. A significant contribution in addition to the electron-phonon term of lambda_c=1.7 to 4.3 is deduced. In an effort to understand the origin of the enhancement mechanism, we also investigate an unusual energetically low-lying phonon. There are three phonon modes per RbOs2O6, suggestive of the phonon source being the rattling motion of the alkali ion. This dynamic instability of the alkali ions causes large scattering of the charge carriers which shows up in an unusual temperature dependence of the electrical resistivity.Comment: Accepted for publication in PR

    Spiral attractors as the root of a new type of "bursting activity" in the Rosenzweig-MacArthur model

    Full text link
    We study the peculiarities of spiral attractors in the Rosenzweig-MacArthur model, that describes dynamics in a food chain "prey-predator-superpredator". It is well-known that spiral attractors having a "teacup" geometry are typical for this model at certain values of parameters for which the system can be considered as slow-fast system. We show that these attractors appear due to the Shilnikov scenario, the first step in which is associated with a supercritical Andronov-Hopf bifurcation and the last step leads to the appearance of a homoclinic attractor containing a homoclinic loop to a saddle-focus equilibrium with two-dimension unstable manifold. It is shown that the homoclinic spiral attractors together with the slow-fast behavior give rise to a new type of bursting activity in this system. Intervals of fast oscillations for such type of bursting alternate with slow motions of two types: small amplitude oscillations near a saddle-focus equilibrium and motions near a stable slow manifold of a fast subsystem. We demonstrate that such type of bursting activity can be either chaotic or regular

    Production of Long-Lived Sleptons at LHC

    Full text link
    We analyse the MSSM parameter space and discuss the narrow band near the so-called co-annihilation region where sleptons may be long-lived particles. This region is consistent with the WMAP restrictions on the Dark matter and depends on the value of tanβ\tan\beta. In this region staus are long-lived and may go through the detector. Due to a relatively small mass (150 ÷\div 850 GeV) their production cross-section at LHC may reach a few % pb.Comment: LaTex, 8 pages, 6 eps figure
    corecore